首页> 外文OA文献 >Short, medium and long term load forecasting model and virtual load forecaster based on radial basis neural networks
【2h】

Short, medium and long term load forecasting model and virtual load forecaster based on radial basis neural networks

机译:基于径向基神经网络的短期,中长期负荷预测模型和虚拟负荷预测器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
机译:人工神经网络(ANN)可以轻松地应用于电力分配应用的短期负荷预测(STLF)模型。但是,由于与收集和处理必要数据有关的困难,它们通常不用于中长期负荷预测(MLTLF)电力模型。虚拟仪器(VI)技术可以应用于电力负荷预测,但是在文献中很少报道。在本文中,我们研究了使用ANN进行短期,中期和长期负荷预测的VI的建模和设计。为电力STLF建立了三个ANN模型。这些网络使用历史负载数据进行了训练,还考虑了天气数据,这些数据已知会对电力的使用产生重大影响(例如风速,降水,大气压力,温度和湿度)。为此,提出了一个V型温度处理模型。关于MLTLF,使用径向基函数神经网络(RBFNN)开发了一个模型。结果表明,基于RBFNN的预测模型具有较高的准确性和稳定性。最后,提出了一个集成了VI和RBFNN的虚拟负载预测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号